Soil-traits interactions, path analysis of growth and fertility indicators driving sugarcane (*Saccharum officinarum*) yield in the Nigerian Southern Guinea Savanna

M.S. BASSEY1, E.A. SHITTU*2

Abstract

Optimizing sugarcane yield under variable soil conditions requires a deep understanding of the interactions between plant traits and soil fertility parameters. This study investigated the direct and indirect contributions of key growth attributes and soil properties to sugarcane (Saccharum officinarum L.) yield in the Southern Guinea Savanna of Nigeria. Field trials were conducted at Badeggi during the 2018 and 2019 rainy seasons. Growth parameters, including stalk height, stalk girth, and Brix content and soil fertility indicators (organic carbon, total nitrogen, and available phosphorus) were measured and analyzed using correlation and path coefficient analysis. Cane yield showed strong positive correlations with stalk height, stalk girth, and soil organic carbon across both seasons. Path analysis identified stalk girth (31.6% in 2018; 19.1% in 2019) and stalk height (7.5% in 2018; 19.3% in 2019) as the most influential direct contributors to yield. Soil nutrients and Brix content contributed indirectly, primarily through their enhancement of structural growth traits. The analytical model accounted for 71.2% and 80.4% of yield variability in 2018 and 2019, respectively. These findings underscore the pivotal role of stalk morphology and nutrient-enriched soils particularly organic carbon and phosphorus in driving cane yield. The results advocate for an integrated approach that combines varietal selection for structural vigor with site-specific nutrient management to sustainably enhance sugarcane productivity in savanna agroecosystems.

Keywords: Sugarcane yield, stalk traits, soil fertility, path analysis, organic carbon

¹ National Cereals Research Institute, Badeggi, Bida, Niger State, Nigeria

Received 01/08/2025 Accepted 27/10/2025

INTRODUCTION

Sugarcane (*Saccharum officinarum*) is a member of the Poaceae family, a group of large tropical and subtropical grasses widely cultivated within 30° latitude north and south of the equator (Verma *et al.*, 2022). Globally, sugarcane accounts for approximately 75% of total sucrose production (Bassey *et al.*, 2020; 2024). While it is primarily grown for raw sugar, sugarcane has gained renewed interest as a vital source of renewable energy, particularly due to its role in ethanol production (Sarwar Khan *et al.*, 2021; Romeu da Silva *et al.*, 2025).

Despite its economic importance, Nigeria's national average sugarcane yield remains below 65 t/ha, significantly lower than the global average of 175.1 t/ha (NSDC, 2022; Bassey *et al.*, 2024). The relationship between sugarcane growth and yield components has been widely explored. Abo-Elwafa *et al.* (2021) and Desalegn *et al.* (2023) reported significant positive correlations between cane yield and various traits, including germination percentage, number of shoots, number of millable canes, stalk diameter and length, number and length of internodes, stalk weight, and number of green leaves. In contrast, top weight showed a positive but non-significant correlation with yield (Verma *et al.*, 2021), while Brix content was negatively correlated with cane yield at all stages.

Understanding how developmental factors influence yield is essential for successful crop improvement. One effective approach is path coefficient analysis, which allows researchers to break down the observed correlation

between traits into direct and indirect effects (Khan *et al.*, 2022; Verma *et al.*, 202). Introduced by Dewey and Lu (1959), this method provides insight into which traits have a more meaningful, causative impact on yield. For instance, it can reveal whether plant height influences yield directly or through its effect on other traits like stalk girth or leaf area. This insight helps breeders focus on the most yield-contributing characteristics, ultimately improving selection efficiency and crop performance. While this study focuses primarily on correlation analysis, it adopts a similar philosophy by evaluating the associations between agronomic, soil, and weed parameters and their collective contribution to cane yield under the agroecological conditions of Badeggi, Nigeria.

MATERIALS AND METHODS

A field experiment was conducted at the upland sugarcane experimental field of National Cereals Research Institute, Badeggi (Lat. 90 45' N, Long. 60 07' E and 89 m above sea level) in the southern Guinea savanna agro-ecological zone of Nigeria in 2018 and 2019 wet and dry season. The average annual rainfall during the experimental was 1504 mm in 2018 and 1045 mm in 2019 while the mean air temperature was 35 to 38 °C in 2018 and 34 to 36 °C in 2019.

Composite soil samples were taken before field establishment from ten spots along a diagonal and at harvest from each treatment plot from 0 to 15 cm depth, and subjected to routine analyses. Particle size analysis was done by the

² Department of Agronomy, Bayero University Kano, Kano State, Nigeria

^{*}Corresponding author seabraham.agr@buk.edu.ng

Bouyoucos hydrometer method (Gee and Or, 2002). Soil organic carbon was determined by the procedure of Walkley and Black using the dichromate wet oxidation method (Nelson *et al.* 1996). Total N was determined by the micro-Kjeldahl digestion method (Bremner and Mulvaney, 1982). The Olsen method was used to determine available phosphorus, and flame photometry for exchangeable potassium (Okalebo *et al.* 2002). Soil pH was determined in 1:2 soil—water ratio using digital electronic pH meter.

Before cultivation, the vegetative cover of the experimental site was manually cleared, ploughed and harrowed with a tractor in the first week of February 2016 and 2017. The land was fully irrigated before planting by pumping water from a stream using a 3.5 HP water pump with a 12.5 cm diameter hose. Thereafter, the land was marked out into plots with bunds at the edges for water retention. Gross plot size was 5 m x 4 m (20 m²) consisting of 4 sugarcane rows, and net plot size was 5 m x 2 m (10 m²) consisting of 2 sugarcane rows. Each row was spaced at 1 m apart. Tender healthy young stalks of six months old sugarcane were used as planting material. The stalks were cut into setts each containing three eye buds, planted continuously end-to-end without intra-row spacing in shallow sunken bed. The application of pre-emergence (PE) diuron was done immediately after planting at 2.0 kg a.i ha⁻¹. The trash mulch was applied at a thickness of 1, 3 and 5 cm (Henrique et al., 2013) for 3, 6 and 9 t ha respectively, with a small opening left of the setts which were closed up after sprouting. The application of post-emergence (POE) 3-maize force at 179.2 g ha [metolachlor 375 g L⁻¹ plus terbuthylazine 125 g L plus mesotrione 37.5 g L⁻¹] was applied at 5 weeks after planting (WAP). The NPK fertilizer was applied at 150 kg N, 60 kg P₂O₅ and 90 kg K₂O in equal halves at planting and 10 WAP. Irrigation water was applied at 41.3 L per plot once per week from February to April. Rainfall was supplemented with irrigation in May which was the establishment of the rainy season.

The treatments consisted of a factorial combination of two sugarcane genotypes [Chewing cane (Bida local and Industrial cane (NCS 001)], four rates of sugarcane trash mulch rates (0, 3, 6, 9 t ha⁻¹) and four weed management practices [weedy check, five monthly hoe weeding (5 MHW), pre-emergence (PE) application of diuron at 2 kg a.i ha⁻¹ + post-emergence (POE) application of 3 – maize force at 179.2 g ha⁻¹ + 2 MHW, and PE diuron + POE 3-maize force] making a total of 32 treatments arranged as a split-plot in a Randomized Complete Block Design

and replicated three times. Weed management practices and trash mulching were allocated to the main plot, while sugarcane genotypes were the subplot. The gross plot size was $5 \text{ m} \times 4 \text{ m} (20 \text{ m}^2)$, while the net plot size was $5 \text{ m} \times 2 \text{ m} (10 \text{ m}^2)$. Each net plot consisted of four rows of 5 m length.

RESULTS AND DISCUSSION

The correlation analysis of sugarcane traits at Badeggi during the 2018 and 2019 rainy seasons revealed important relationships between cane yield (C_YLD), plant growth characteristics, and soil nutrient status (Tables 1 and 2). Notably, cane yield showed significant positive correlations with key growth traits such as stalk height (SH) and stalk girth (SG), as well as with soil properties including organic carbon (O.C), total nitrogen (T.N), available phosphorus (AVP), potassium (K), and brix content (BC) in both years.

Stalk height and girth were strongly associated with higher cane yield: $r = 0.770^{**}$ and 0.538^{**} in 2018, and $r = 0.365^{*}$ and 0.633^{**} in 2019. This indicates that taller and thicker stalks contribute substantially to yield, likely due to greater biomass and juice accumulation. These findings support previous reports highlighting stalk dimensions as reliable predictors of cane yield (Patil *et al.*, 2020; Vigneshwari and Shanthi, 2023).

Soil fertility parameters also played a critical role. Organic carbon and nitrogen were positively and significantly correlated with cane yield across both seasons (O.C: $r = 0.537^{**}$ in 2018, $r = 0.587^{**}$ in 2019; T.N: $r = 0.513^{**}$ in 2018, $r = 0.568^{**}$ in 2019). Similarly, available phosphorus and potassium also showed strong positive relationships with yield (AVP: $r = 0.526^{**}$ in 2018, $r = 0.536^{**}$ in 2019; K: $r = 0.526^{**}$ in 2018, $r = 0.426^{*}$ in 2019). These results underscore the importance of maintaining a balanced soil nutrient profile to support optimal plant growth and productivity. The findings align with earlier research indicating that organic amendments and balanced fertilization strategies can significantly enhance both yield and sugar recovery in sugarcane (Ijaz *et al.*, 2023).

Interrelationships among soil nutrients were particularly strong, especially between organic carbon and total nitrogen ($r = 0.945^{**}$ in 2018, $r = 0.982^{**}$ in 2019), and also between these nutrients and both available phosphorus and potassium. This suggests that increasing soil organic matter content through practices like green manuring or composting can enhance overall nutrient availability and thus support better crop performance (Patil *et al.*, 2023).

Table 1: correlation analysis of cane yield (t ha⁻¹) with growth and soil characters of sugarcane at Badeggi during 2018 rainy season

	C_YLD	WB	SH	SG	ВС	O.C	T. N	AVP	K
C_YLD	1.000								
WB	-0.433	1.000							
SH	0.770**	-0.484*	1.000						
SG	0.538**	-0.523*	0.799**	1.000					
BC	0.512**	-0.413*	0.827**	0.871**	1.000				
O.C	0.537**	-0.350*	0.519**	0.631**	0.513**	1.000			
T. N	0.513**	-0.338*	0.463**	0.575**	0.433**	0.945**	1.000		
AV	0.526**	-0.380*	0.509**	0.625**	0.493**	0.959**	0.969**	1.000	
K	0526**	-0.329*	0.492*	0.597**	0.479**	0.969**	0.969**	0.962**	1.000

^{*} Significant (5%), ** highly significant (1%), C_YLD= Cane yield (t/ha), WB= Weed biomass (gm²), SH= Stalk height (cm), G= Stalk girth (cm), BC = Brix content, O.C= Soil Organic carbon, TN= Soil Total nitrogen, AVP= Available phosphorus, K= Potassium

Additionally, Bassey *et al.* (2023) and 2024 reported similar findings of increase crop performance due to nutrient accumulation arising from trash mulch application.

Brix content, an indicator of sugar accumulation, was moderately correlated with yield ($r = 0.512^{**}$ in 2018 and r = 0.368 in 2019). This suggests that, beyond biomass, the concentration of sugars in the stalk also contributes meaningfully to total yield. Similar relationships between biomass and Brix content have been reported in other crops, such as sorghum and grafted melon cultivars (Ercan *et al.*, 2024; Sun *et al.*, 2024).

Conversely, weed biomass had a significant negative correlation with cane yield in both years (r = -0.433* in 2018, r = -0.542** in 2019). This clearly indicates that weed competition significantly reduces sugarcane yield by limiting access to vital resources such as light, water, and nutrients. Effective weed management is therefore critical to maximizing yield potential. This observation is consistent with findings that early-season weed interference can lead to yield losses of 30–60% if not adequately managed (Horvath *et al.*, 2023; Shittu and Abdullahi, 2022 a and b).

This study highlights that achieving high cane yield depends on a combination of vigorous plant growth, fertile soil, and effective weed control. The results reinforce the importance of integrated agronomic practices specifically, nutrient management, organic matter enhancement, and timely weed suppression for sustainable sugarcane production.

Partition of the correlation matrix

Tables 3 and 4 and Figures 1 and 2 illustrate how total correlation is divided into direct and indirect effects of specific growth and soil factors on sugarcane yield during the 2018 and 2019 rainy seasons at Badeggi. The analyses highlight the significance of stalk morphology and soil nutrient traits in influencing yield, while also pointing out the complex interactions among these factors.

During the 2018 season, stalk girth exhibited the highest direct contribution to cane yield (31.6%), followed by stalk height (7.5%), with other traits such as Brix content, soil organic carbon, total nitrogen, and available phosphorus contributing minimally through direct effects. The most prominent indirect contribution came from stalk height via stalk girth (26.8%), indicating that taller plants with thicker stalks significantly enhance yield potential. This supports findings from recent sugarcane studies showing that structural growth traits, especially stalk diameter, are strong yield predictors due to their association with biomass and sugar accumulation (Ahmad et al., 2019; Ittah and Obok, 2019).

In contrast, the 2019 season showed a shift in the magnitude of direct effects, with stalk height (19.3%) and stalk girth (19.1%) emerging almost equally as top contributors to yield. This suggests a stronger role of plant height under the 2019 conditions, possibly due to improved growing environments or genotypic variation. Brix content (1.94%) and available phosphorus (1.55%) also showed increased direct effects in 2019, indicating that, although secondary to structural traits, quality and

Table 2: Correlation analysis of cane yield (tha-1) with growth and soil characters of sugarcane at Badeggi during 2019 rainy season

	C-YLD	WB	SH	SG	BC	O.C	T. N	AVP	K
C_YLD	1.000								
WB	-0.542	1.000							
SH	0.365*	-0.582**	1.000						
SG	0.633**	-0.665**	0.544**	1.000					
BC	0.368*	-0.594**	0.554**	0.622**	1.000				
O.C	0.587**	-0.684**	0.505**	0.672**	0.536**	1.000			
T. N	0.568**	-0.639**	0.468*	0.656**	0.506**	0.982**	1.000		
AV	0.536**	-0.698**	0.509**	0.597**	0.505**	0.917**	0.889**	1.000	
K	0.426*	-0.538**	0.524**	0.528**	0.432*	0.929**	0.945**	0.864**	1.000

^{*} Significant (5%), ** highly significant (1%), C_YLD= Cane yield (t/ha), WB= Weed biomass (gm²), SH= Stalk height (cm), G= Stalk girth (cm), BC = Brix content, O.C= Soil Organic carbon, TN= Soil Total nitrogen, AVP= Available phosphorus, K= Potassium

Table 3: Direct and indirect contribution of some growth and yield components to cane yield (t ha⁻¹) of sugarcane during 2018 and 2019 rainy season at Badeggi

	Stalk height (cm)	Stalk girth (cm)	Brix content	Soil organic carbon	Soil total ni- trogen	Available phos- phorus	
	Effect through 2018 season						
Stalk height (cm)	lk height (cm) 0.273718 0.489429 -0.00537 0.037705 0.012921 -0				-0.0094		
Stalk girth (cm)	0.238408	0.561917	-0.00437	0.028393	0.010192	-0.00754	
Brix content	0.172716	0.288263	-0.00851	0.061967	0.019826	-0.01526	
Soil Organic carbon	0.157388	0.24331	-0.00805	0.065574	0.020032	-0.01526	
Soil Total nitrogen	0.171074	0.277025	-0.00816	0.063541	0.020673	-0.01515	
Available phosphorus	0.163409	0.269158	-0.00825	0.063541	0.019888	-0.01575	
	Effect through 2019 season						
Stalk height (cm)	0.439374	0.187657	0.296192	-1.09674	0.060033	0.657483	
Stalk girth (cm)	0.273291	0.301699	0.236248	-0.84596	0.050782	0.53794	
Brix content	0.29526	0.161711	0.440762	-1.64176	0.092212	1.156821	
Soil Organic carbon	0.28823	0.15266	0.432828	-1.67186	0.089396	1.176745	
Soil Total nitrogen	0.262307	0.152358	0.404178	-1.48628	0.100558	1.075881	
Available phosphorus	0.23199	0.130334	0.409467	-1.57991	0.086882	1.245232	

 $Bold = Direct \ effect$

soil-related factors can play more substantial roles under favorable conditions. These findings align with the work of Mebrahtom *et al.* (2018), who reported that cane yield is closely tied to tiller number, stalk diameter, and plant height, with variable influence from soil fertility parameters depending on the growing environment.

Indirectly, the highest positive contributions in 2019 included stalk height via Brix content (6.03%), and total nitrogen via available phosphorus (1.64%), reinforcing the importance of nutrient synergy in driving yield. However, several traits showed unusually high or negative indirect effects, such as Brix content via organic carbon (-144.7%) and organic carbon via available phosphorus (-393.5%). These extreme values likely reflect multicollinearity or suppressor effects within the path model common in complex soil-plant systems (Zaheer *et al.*, 2019). Despite this, the total variation in cane yield explained by the path

model was relatively high: 71.2% in 2018 and 80.4% in 2019, indicating that the selected traits substantially account for yield performance across both seasons.

Overall, the consistent influence of stalk girth and stalk height across both years affirms their central role in sugarcane yield improvement. These structural traits are often used as proxies for biomass production and juice volume, making them critical targets in breeding and management programs (Khan *et al.*, 2018; Sun *et al.*, 2024). Conversely, while soil nutrients and Brix content showed limited direct effects, their cumulative indirect contributions especially through their enhancement of stalk growth highlight their supportive role in yield formation. Effective soil nutrient management, particularly for nitrogen and phosphorus, remains essential for maximizing the expression of yield-contributing morphological traits (Patil *et al.*, 2023).

Table 4: Percentage contributions of some growth and chemical soil properties to cane yield (t ha⁻¹) of sugarcane at during 2018 and 2019 seasons Badeggi

Growth characters	Percentage contribution (%)				
Direct contribution	2018	2019			
Stalk height (cm)	7.492139	19.30499			
Stalk girth (cm)	31.57502	19.10221			
Brix content	0.007248	1.942707			
Soil Organic carbon	0.429989	2.795108			
Soil Total nitrogen	0.042738	1.011189			
Available phosphorus	0.024795	1.550604			
Combined contribution					
Stalk height (cm) via Stalk girth (cm)	26.79309	16.4903			
Stalk height (cm) via Brix content	-0.29408	6.02782			
Stalk height (cm) via Soil Organic carbon	2.064095	-96.3758			
Stalk height (cm) via Soil Total nitrogen	0.707324	5.275398			
Stalk height (cm) via Available phosphorus	-0.51462	5.77622			
Stalk girth (cm) via Brix content	-0.49082	4.25516			
Stalk girth (cm) via Soil Organic carbon	3.19094	-51.045			
Stalk girth (cm) via Soil Total nitrogen	1.145393	3.064156			
Stalk girth via Available phosphorus	-0.84765	2.45918			
Brix content via Soil Organic carbon	-0.10551	-144.725			
Brix content via Soil Total nitrogen	-0.03376	2.128663			
Brix content via Available phosphorus	0.012842	3.42069			
Soil Organic carbon via Soil Total nitrogen	0.262717	-29.8915			
Soil Organic carbon via Available phosphorus	-0.20011	-393.47			
Soil Total nitrogen via Available phosphorus	-0.06263	1.63766			
Residual	28.80084	19.55557			
Total	100	100			

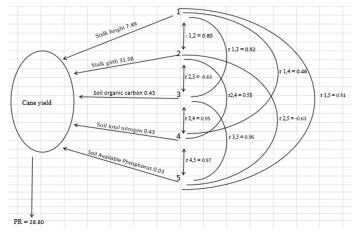


Figure 1: Path diagram showing individual contributions (%) and interrelations to cane yield (t ha⁻¹) of sugar cane at Badeggi during the 2018 rainy season

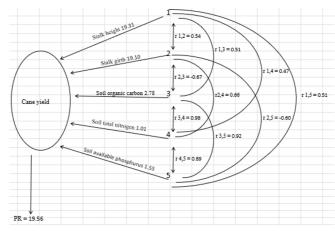


Figure 2: Path diagram showing individual contributions (%) and interrelations to cane yield (t ha⁻¹) of sugar cane at Badeggi during the 2019 rainy season

CONCLUSION

This study established that stalk height and stalk girth are the most critical direct contributors to sugarcane yield under the conditions of the Nigerian Southern Guinea savanna. Correlation analysis confirmed strong positive associations between cane yield and both plant structural traits and soil organic matter content. Path coefficient analysis revealed that while growth traits had dominant direct effects, soil nutrients such as phosphorus and organic carbon exerted significant indirect effects by enhancing those traits. These results reinforce the value of combining genotypic selection for stalk vigor with site-specific soil fertility management to boost cane productivity. The integrated use of correlation and path analysis provided a clearer understanding of trait interrelationships, explaining over 70% of the variation in yield. This approach offers a robust model for guiding breeding and agronomic decisions in sugarcane production systems in sub-humid environments.

REFERENCES

Abo-Elwafa A., Gala M.O.A., Nosier H.M.M., ElSoghier-Mohamed A.N. (2021). Correlation and regression analyses for cane and sugar yields across their components under bud chips and conventional planting methods in sugar cane. *Egyptian Sugar Journal*, 16: 1-25. Ahmad Z.N., Khan H., Ali Q., Ahmad I. (2019). Identification of novel QTLs controlling sugarcane smut resistance and yield traits. *Genetika*, 51: 877-894.

Bassey M.S., Eze J.N., Shittu E.A., Ayanniyi N.N., Ekaette E.E., Ekaette J.E. (2024). Nigeria's sugar industry: challenges, opportunities, and prospects for self-sufficiency. *Badeggi Journal of Agricultural Research and Environment*, 6: 01–12.

Bassey M.S., Mohammed A.K., Mohammed S.U., Aliyu U., Musa I., Ahmadu M.K., Ekaette J.E., Lemibe P.C. (2020). Impact of *Saccharum officinarum* genotypes on weed infestation, juice quality, cane and sugar yield in Nigeria. *International Journal of Applied Research and Technology*, 9: 21-30.

Bassey M.S., Shittu E.A., Lawan Z.M., Eze J.N. (2023). Evaluation of sugarcane hybrid clones on weed dynamics, sugar quality, and plant crop productivity at Badeggi, Nigeria. *Badeggi Journal of Agricultural Research and Environment*, 5: 1–13.

Bremner J.M., Mulvaney C.S. (1982). Nitrogen-Total. In A.L. Page, R.H. Miller, D.R. Keeney (Eds.), *Methods of soil analysis*, Part 2: Chemical and microbiological properties (pp. 595–624). American Society of Agronomy.

Desalegn B., Kebede K., Legesse H., Fite T. (2023). Sugarcane productivity and sugar yield improvement: Selecting variety, nitrogen fertilizer rate, and bioregulator as a first-line treatment. *Heliyon*, 9: e15520.

Dewey D.R., Lu K.H. (1959). A correlation and path coefficient analysis of components of crested wheat grass seed production. *Agronomy Journal*, 52: 515-518.

Ercan U., Sonmez I., Kabaş A., Kabas O., Calık Zyambo B., Gölükcü M., Paraschiv G. (2024). Quantitative assessment of Brix in grafted melon cultivars: a machine learning and regression-based approach. *Foods*, 13: 3858.

Gee G.W., Or D. (2002). 2.4 Particle-Size Analysis. *Methods of Soil Analysis: Part 4 Physical Methods*, 5: 255-293.

Horvath D.P., Clay S.A., Swanton C.J., Anderson J.V., Chao W.S. (2023). Weed-induced crop yield loss: a new paradigm and new challenges. *Trends in Plant Science*, 28: 567-582.

Ijaz M., Ul-Allah S., Sattar A., Sher A., Hussain I., Nawaz A. (2023). Evaluation of various organic amendment sources to improve the root yield and sugar contents of sugar beet genotypes (*Beta vulgaris* L.) Under arid environments. *Sustainability*, 15: 3898.

Ittah M., Obok E.E. (2019). Breeding potential and multivariate analyses of morphological and yield traits in industrial sugarcane (*Saccharum officinarum* L.) accessions in a humid tropical agroecology. *International Journal of Plant and Soil Science*, 27: 1-13. Khan M.M.H., Rafii M.Y., Ramlee S.I., Jusoh M., Al-Mamun Md. (2022). Path-coefficient and correlation analysis in Bambara groundnut (*Vigna subterranea* [L.] Verdc.) accessions over environments. *Scientific Report*, 12: 245.

Khan M.T., Khan I.A., Yasmeen S., Seema N., Nizamani G.S. (2018). Field evaluation of diverse sugarcane germplasm in agroclimatic conditions of Tandojam, Sindh. *Pakistan Journal of Botany*, 50: 1441-1450.

Mebrahtom F., Firew M., Eyasu A. (2018). Multivariate analysis of sugar yield contributing traits in sugarcane (*Saccharum officinarum* L.) in Ethiopia. *African Journal of Plant Science*, 12: 145-156. National Sugar Development Council (NSDC) (2022). *National Sugar Policy*, 5: 7-10.

Nelson D.W., Sommers L.E. (1982). Total carbon, organic carbon, and organic matter. In A.L. Page, R.H. Miller, D.R. Keeney (Eds.), *Methods of soil analysis*, Part 2: Chemical and microbiological properties (pp. 539-579). American Society of Agronomy.

Okalebo J.R., Gathua K.W., Woomer P.L. (2002). Laboratory Methods of Soil and Plant Analysis. A Working Manual, 2nd edn. TSBF-CIAT, SACRED Africa, KARI, SSEA, Nairobi, Kenya.

Patil A., Jadhav M.P., Deshmukh R.R. (2023). Effect of organic manures on soil health and yield of sugarcane. *Sugar Tech*, 25: 101-108. Patil P.P., Patil S.S., Mali S.C., Patel D.U. (2020). Character association and path analysis for cane yield, juice quality and their component traits in sugarcane over the environment. *International Journal of Chemical Studies*, 8: 3491-3495.

Romeu da Silva G.H., Nascimento A., Nascimento D., Hunt J. D., Mathias M.H. (2025). Analysis of the sugarcane biomass use to produce green hydrogen: Brazilian case study. *Applied Sciences*, 15: 1675. Sarwar Khan M., Mustafa G., Ahmad Joyia F., Ali Mirza S. (2021). Sugarcane as future bioenergy crop: potential genetic and genomic approaches. IntechOpen.

Shittu E.A., Abdullahi S.Y. (2022a). Growth Performance of Sorghum (Sorghum bicolor L. Moench) as influenced by variety and weed control treatment in a semi-arid ecology of Nigeria. International Journal of Agricultural Science and Technology, 9: 1-16. Shittu E.A., Abdullahi S.Y. (2022b). Yield and yield attributes of sorghum varieties (Sorghum bicolor [L]. Moench) as influenced by weed control in Sudan and northern Guinea savanna ecology of Nigeria. International Academy Journal of Agribusiness and Agricultural Science Annals, 6: 1-14.

Sun W., He Z., Liu B., Ma D., Si R., Li R., Wang S., Malekian A. (2024). Changes in photosynthetic efficiency, biomass, and sugar content of sweet sorghum under different water and salt conditions in arid region of Northwest China. *Agriculture*, 14: 2321.

Verma K.K., Song X.P., Budeguer F., Nikpay A., Enrique R., Singh M., Zhang B.Q., Wu J.M., Li Y.R. (2022). Genetic engineering: an efficient approach to mitigating biotic and abiotic stresses in sugarcane cultivation. *Plant signaling and behavior*, 17: 2108253. Verma O.N., Sinha S.K., Salam J.L., Rastogi N.K., Nair S.K. (2021). Correlation and path coefficient analysis of cane yield and Biochemical and its components in sugarcane varieties (*Saccharum officinarum* L.) under three agro-climatic zones of Chhattisgarh. *The Pharma Innovation Journal*, 10: 1772-1778.

Verma P., Singh G., Singh S.K., Bakshi M., Mirza A.A., Anmol Mehandi S., Vijayvargiya V. (2025). Correlation, path-coefficient and principal component analysis association among quantitative traits in strawberry to unlock the potential of the vertical farming system. *Kuwait Journal of Science*, 52: 100303.

Vigneshwari R., Shanthi R.M. (2023). Identifying the principal contributing traits for commercial cane sugar yield at first clonal selection stage in sugarcane (*Saccharum* spp.). *International Journal of Environment and Climate Change*, 13: 3312–3321.

Zaheer A., Khan H., Ali Q., Ahmad I. (2019). Identification of QTLs associated with sugar recovery and cane quality traits in sugarcane (*Saccharum* spp.). *Genetika*, 51: 877-894.