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Abstract
Post-harvest diseases are a major contributor to global food losses, accounting for 20-50% of 
perishable crops, thereby threatening food security and economic stability. Traditional disease 
detection methods, such as visual inspection and microbiological culturing, are often slow, sub-
jective, and lack the sensitivity needed for early pathogen identification. Recent advancements in 
biotechnology and computational analytics have introduced transformative solutions, including 
molecular diagnostics, spectroscopic techniques, and artificial intelligence-powered imaging 
systems. Molecular methods such as polymerase chain reaction, loop-mediated isothermal am-
plification, and CRISPR-based assays enable rapid and precise pathogen detection at the genetic 
level. Meanwhile, non-destructive technologies like near-infrared spectroscopy and hyperspec-
tral imaging capture biochemical and morphological changes in produce, allowing for real-time 
monitoring. AI and machine learning further enhance these approaches by automating disease 
recognition through deep learning models such as convolutional neural networks, improving 
accuracy and scalability. This review comprehensively examines these innovations, discussing 
their principles, applications, advantages, and current limitations. Additionally, it explores future 
trends, including the integration of multi-modal detection systems and edge computing for on-
site diagnostics. By leveraging these cutting-edge technologies, the agricultural sector can sig-
nificantly reduce post-harvest losses, enhance food safety, and optimize supply chain efficiency.
Keywords: polymerase chain reaction, loop-mediated isothermal amplification, CRISPR, hyperspectral 
imaging, near-infrared spectroscopy, artificial intelligence, machine learning, deep learning, convolutional 
neural networks, food security, pathogen detection, non-destructive testing

INTRODUCTION
Food security remains a critical global challenge, with 
post-harvest losses due to microbial spoilage, fungal 
infections, and physiological deterioration accounting 
for an estimated 20–50% of perishable crops world-
wide (Taha et al., 2025). These losses not only reduce 
the availability of nutritious food but also contribute to 
significant economic waste, particularly in developing 
regions where storage and transportation infrastructure 
are inadequate. The primary culprits of post-harvest 
decay include fungal pathogens such as Botrytis cinerea, 
Penicillium expansum, and Aspergillus flavus, as well as 
bacterial and viral agents that thrive in storage conditions 
(González-Rodríguez et al., 2024). Traditional methods 
for detecting these pathogens—such as visual inspection, 
culturing on selective media, and biochemical assays—
are often labor-intensive, time-consuming, and limited 
in sensitivity. Moreover, these techniques frequently fail 
to identify infections at early stages when interventions 
could still mitigate damage (Petcu et al., 2024).
The growing demand for sustainable food systems has 
driven the development of innovative diagnostic tools 
that offer rapid, accurate, and non-destructive detec-
tion of post-harvest diseases. Among these, molecular 
diagnostics—including polymerase chain reaction, 
quantitative PCR, loop-mediated isothermal amplifica-
tion, and CRISPR-based systems—have revolutionized 
pathogen identification by enabling high-throughput, 
species-specific detection at the genomic level (Yuan 

et al., 2022; Mellikeche et al., 2024; Vo and Trinh, 
2025). These methods significantly reduce diagnostic 
time while improving precision compared to conven-
tional techniques (Hasanaliyeva et al., 2022). Parallel 
advancements in optical sensing technologies, such as 
near-infrared spectroscopy and hyperspectral imaging, 
allow for real-time, non-invasive monitoring of produce 
by detecting subtle biochemical and structural changes 
associated with disease (Zhang et al., 2019).
Perhaps the most transformative development in recent 
years has been the integration of artificial intelligence 
and machine learning into post-harvest disease detec-
tion (Yan et al., 2023). Deep learning algorithms, par-
ticularly convolutional neural networks, can analyze 
vast datasets from imaging and spectral sensors to clas-
sify disease symptoms with high accuracy (Nikzadfar et 
al., 2024). AI-powered systems are increasingly being 
deployed in smart storage facilities, where they combine 
environmental data (e.g., temperature, humidity) with 
real-time imaging to predict and prevent outbreaks 
(Botero-Valencia et al., 2025). Despite these advance-
ments, challenges remain in making these technolo-
gies accessible to small-scale farmers and integrating 
them into existing supply chains (Ali et al., 2025). This 
review explores the evolution of post-harvest disease 
detection, from foundational molecular techniques to 
next-generation AI-driven solutions, while addressing 
current limitations and future opportunities for reduc-
ing global food waste.
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MOLECULAR DIAGNOSTICS IN POST-
HARVEST DISEASE DETECTION
The advent of molecular diagnostics has revolution-
ized post-harvest disease detection by enabling precise, 
rapid, and sensitive identification of pathogens at the 
genetic level. These techniques have largely supplanted 
traditional culture-based methods by offering species-
specific detection, even in latent or early-stage infections 
where visual symptoms are absent. Among the most 
impactful molecular tools are polymerase chain reac-
tion (PCR)-based methods, isothermal amplification 
techniques like LAMP, and the emerging CRISPR-based 
detection systems, each offering unique advantages for 
different post-harvest applications (Khadiri et al., 2024).

Polymerase Chain Reaction (PCR) and Quantita-
tive PCR (qPCR)
PCR and its quantitative counterpart (qPCR) remain 
gold-standard methods for detecting post-harvest 
pathogens due to their exceptional sensitivity and speci-
ficity. These techniques amplify target DNA sequences 
unique to pathogens, allowing for the identification 
of fungal species like Botrytis cinerea (gray mold) in 
berries or Penicillium digitatum (citrus green mold) at 
concentrations as low as a few femtograms (Kabir et al., 
2020). qPCR further enhances this capability by provid-
ing real-time quantification of pathogen load through 
fluorescent probes, enabling not just detection but also 
assessment of infection severity (Chen et al., 2022). For 
instance, qPCR assays targeting the β-tubulin gene of 
Colletotrichum species have been successfully used to 
monitor anthracnose development in mangoes during 
storage (Radomirović et al., 2025). However, these meth-
ods require sophisticated thermocycling equipment, 
DNA extraction protocols, and skilled personnel, limit-
ing their use in field settings. Recent innovations like 
portable PCR systems and rapid DNA extraction kits are 
helping bridge this gap, making molecular diagnostics 
more accessible for point-of-need testing in packing-
houses and storage facilities (Vo and Trinh, 2025).

Loop-Mediated Isothermal Amplification 
(LAMP)
LAMP has emerged as a powerful alternative to PCR, par-
ticularly for decentralized post-harvest disease monitor-
ing. Unlike PCR, which requires thermal cycling, LAMP 
operates at a constant temperature (60–65°C) and can 
amplify DNA with high efficiency using just a heating 
block or water bath (Aglietti et al., 2024). This simplic-
ity, combined with visual readouts (e.g., color changes 
from fluorescent dyes or turbidity), makes LAMP ideal 
for field applications. For example, LAMP assays target-
ing the polygalacturonase gene of Aspergillus flavus can 
detect aflatoxin-producing strains in peanuts within 
30 min, significantly faster than traditional culturing 
(Mellikeche et al., 2024). Similarly, LAMP-based kits for 
Fusarium species in grains enable rapid on-site screen-
ing to prevent mycotoxin contamination during storage 

(Liu et al., 2022). Despite these advantages, LAMP can 
suffer from non-specific amplification if primer design 
is suboptimal, and its multiplexing capability (detecting 
multiple pathogens simultaneously) remains inferior to 
qPCR. Ongoing improvements in primer design and 
the integration of portable fluorescence detectors are 
addressing these limitations, expanding LAMP’s utility 
in post-harvest pathogen surveillance (Bani et al., 2024).

CRISPR-Based Detection
The CRISPR-Cas system, renowned for its gene-editing 
capabilities, has been repurposed into a groundbreak-
ing diagnostic tool for post-harvest diseases. Platforms 
like SHERLOCK (Specific High-sensitivity Enzymatic 
Reporter unLOCKing) and DETECTR (DNA En-
donuclease Targeted CRISPR Trans Reporter) utilize 
CRISPR-associated enzymes (e.g., Cas12, Cas13) to 
cleave pathogen-specific nucleic acids, triggering fluo-
rescent or lateral flow signals for easy interpretation (Xie 
et al., 2024). These systems combine the sensitivity of 
PCR with the simplicity of lateral flow tests, enabling 
ultrasensitive detection without complex instrumen-
tation. For instance, CRISPR-Cas12 assays have been 
developed to identify Phytophthora infestans (potato late 
blight) in stored tubers with 10-fold greater sensitivity 
than conventional PCR (Yuan et al., 2022). Another 
breakthrough is the detection of Xanthomonas species 
in citrus fruits using CRISPR-based lateral flow strips, 
which provide results in under an hour with minimal 
training required. While CRISPR diagnostics are still in 
the early stages of commercialization, their potential for 
low-cost, high-accuracy field-testing is immense (Son, 
2024). Current challenges include optimizing sample 
preparation for complex produce matrices and ensuring 
stability of reagents in varying climates—hurdles that 
are being actively addressed through lyophilized reagent 
formulations and integrated microfluidic devices (Fari-
nati et al., 2024).

Synthesis and Future Directions
Molecular diagnostics have undeniably transformed 
post-harvest disease management, yet each technique 
presents a trade-off between accuracy, speed, and de-
ployability. While PCR/qPCR remains the benchmark 
for lab-based confirmation, LAMP and CRISPR are pav-
ing the way for decentralized testing. Future innovations 
may focus on integrating these methods with automated 
sample processing and IoT-enabled devices to create 
end-to-end diagnostic systems for smart agriculture 
(Hernandez-Montiel et al., 2021). For example, combin-
ing LAMP’s speed with CRISPR’s specificity could yield 
next-generation assays for simultaneous detection of 
multiple pathogens in stored crops (Zhang et al., 2019; 
Hasanaliyeva et al., 2022). As these technologies mature, 
their adoption will hinge on cost reduction, user-friendly 
design, and validation across diverse crops and storage 
conditions—key steps toward minimizing global post-
harvest losses (Hasanaliyeva et al., 2022; Moradinezhad 
and Ranjbar, 2023).
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SPECTROSCOPY AND HYPERSPECTRAL 
IMAGING IN POST-HARVEST DISEASE 
DETECTION
The limitations of traditional destructive testing methods 
have driven significant innovation in optical sensing 
technologies for post-harvest quality control. Spectros-
copy and hyperspectral imaging represent a paradigm 
shift in disease detection, offering rapid, non-contact, 
and non-destructive analysis of produce by capturing the 
unique biochemical fingerprints associated with patho-
gen infection (García-Vera et al., 2024). These techniques 
leverage the interaction between light and matter to 
detect subtle physiological changes that precede visible 
symptoms, enabling early intervention to prevent spoil-
age spread in storage facilities (Wan et al., 2022).

Near-Infrared (NIR) and Raman Spectroscopy
NIR spectroscopy (750-2500 nm) has emerged as a 
powerful tool for post-harvest disease management 
due to its ability to probe molecular vibrations of C-H, 
O-H, and N-H bonds in organic compounds. This tech-
nique detects disease-induced changes in carbohydrate, 
protein, and water content that occur during pathogen 
colonization (Yan et al., 2023). For instance, NIR has 
successfully differentiated sound and Fusarium-infected 
wheat kernels with >90% accuracy by identifying charac-
teristic spectral shifts at 1200 nm and 1450 nm associated 
with starch degradation (Sohn et al., 2021). Portable NIR 
devices are now being integrated into sorting lines to 
automatically reject infected apples showing early signs 
of Penicillium rot based on their altered spectral profiles 
(Kasampalis et al., 2024).
Raman spectroscopy complements NIR by providing 
molecular specificity through inelastic scattering of mono-
chromatic light. Its ability to detect vibrational modes of 
specific functional groups makes it particularly valuable 
for identifying fungal metabolites and toxins (Saletnik 
et al., 2024). Recent studies have demonstrated Raman’s 
capability to detect Aspergillus flavus contamination in 
maize kernels at aflatoxin concentrations as low as 10 ppb 
by tracking signature peaks of fungal ergosterol at 1602 
cm-¹ (Yan et al., 2023). While traditionally limited by weak 
signals, advancements in surface-enhanced Raman spec-
troscopy (SERS) using nanoparticle substrates have im-
proved sensitivity by 10⁶-fold, enabling detection of single 
bacterial cells in produce wash water (Huang et al., 2025).

Hyperspectral Imaging (HSI)
HSI represents the convergence of spectroscopy and 
digital imaging, providing both spatial and spectral 
information across hundreds of contiguous wavelength 
bands. This technology creates chemical maps of pro-
duce surfaces where disease symptoms manifest first 
(García-Vera et al., 2024). In wheat, HSI in the 400-1000 
nm range can distinguish harmless stem scars from early 
decay lesions caused by Fusarium pseudograminearum 
by analyzing chlorophyll absorption features at 675 nm 
and water content variations at 970 nm (Xie et al., 2021). 
Modern systems capture this data at speeds exceeding 

100 fruits per minute, making the technology viable for 
commercial packing operations (Nikzadfar et al., 2024).
The true power of HSI emerges when combined with ma-
chine learning. Deep learning algorithms trained on spec-
tral libraries can automatically classify multiple disease 
states in stored potatoes by recognizing complex patterns 
across spectral bands (Vignati et al., 2023). For example, 
convolutional neural networks processing 240-band HSI 
data achieve 97% accuracy in discriminating between 
late blight and dry rot infections based on their distinct 
spectral signatures in the 1000-2500 nm range. Recent 
innovations include portable HSI cameras that connect 
to smartphones, enabling real-time field diagnostics by 
comparing crop spectra against cloud-based disease da-
tabases (García-Vera et al., 2024; Nikzadfar et al., 2024).

Implementation Challenges and Future Outlook
While spectroscopic methods show tremendous 
promise, several barriers hinder widespread adoption 
(García-Vera et al., 2024). NIR systems struggle with 
moisture interference in high-humidity storage envi-
ronments, while Raman requires careful calibration to 
avoid fluorescence background in pigmented produce 
(Kasampalis et al., 2024). HSI faces data dimensional-
ity challenges, with single scans generating terabytes of 
information that demand sophisticated compression 
algorithms for practical use (García-Vera et al., 2024). 
Emerging solutions include:
• Hybrid systems combining NIR and Raman for cross-
validated results.
• On-chip spectral sensors that reduce HSI system costs.
• Edge computing devices that preprocess spectral data 
before cloud transmission.
The next generation of spectroscopic tools will likely inte-
grate with blockchain systems to create immutable quality 
records throughout the supply chain. As these technolo-
gies become more affordable and user-friendly, they will 
transform post-harvest disease management from reac-
tive to predictive, potentially reducing global food losses 
by 30-40% in the coming decade (Huang et al., 2025). 
Future research should focus on developing universal 
spectral libraries for major crop-pathogen combinations 
and optimizing systems for use in developing country 
contexts where post-harvest losses are most severe.

AI AND MACHINE LEARNING IN POST-
HARVEST DISEASE DETECTION
The integration of artificial intelligence (AI) and machine 
learning (ML) has revolutionized post-harvest disease 
detection by enabling automated, high-throughput, and 
increasingly precise identification of pathological condi-
tions in stored crops (Botero-Valencia et al., 2025). These 
advanced computational approaches are transforming 
traditional quality control paradigms from subjective 
human visual inspection to objective, data-driven deci-
sion systems capable of detecting subtle disease indicators 
long before they become visible to the naked eye (Ngugi 
et al., 2024). The synergy between AI algorithms and 
modern sensor technologies is creating smart detection 
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systems that not only identify existing infections but also 
can predict disease outbreaks based on environmental 
and physiological parameters, fundamentally changing 
how we approach post-harvest management (González-
Rodríguez et al., 2024; Ali et al., 2025).

Deep Learning for Image Analysis
Deep learning architectures, particularly convolutional 
neural networks (CNNs), have demonstrated remark-
able success in analyzing visual data for disease detection 
(Wang et al., 2025). These algorithms excel at extracting 
hierarchical features from images, enabling them to 
distinguish between healthy tissue and various disease 
manifestations with human-level or superior accuracy. 
Modern implementations use multi-spectral imaging 
systems coupled with deep learning to detect early fun-
gal infections in apples by identifying subtle changes 
in surface texture and spectral reflectance patterns 
that precede visible rot (Lee et al., 2023). For instance, 
a ResNet-50 architecture trained on 50,000 images of 
citrus fruits achieved 98.7% accuracy in differentiating 
between harmless blemishes and early citrus canker 
lesions, a task that even experienced graders struggle. 
Transfer learning approaches, where pre-trained models 
like VGG16 or EfficientNet are fine-tuned with smaller 
agricultural datasets, have proven particularly effective 
in overcoming data scarcity challenges common in post-
harvest applications (Lee et al., 2024; Wang et al., 2025). 
Recent innovations include 3D CNN models that analyze 
temporal sequences of produce images to track disease 
progression in stored potatoes, enabling dynamic risk 
assessment throughout the storage period (Petcu et al., 
2024). However, these systems face challenges including 
the need for large, diverse training datasets that account 
for varietal differences, environmental conditions, and 
the full spectrum of possible disease presentations 
(Opara et al., 2024).

IoT and Smart Sensors
The Internet of Things (IoT) ecosystem in post-harvest 
management combines distributed sensor networks 
with AI analytics to create responsive storage environ-
ments that actively prevent disease outbreaks (Kiobia 
et al., 2023; Ali et al., 2025). Modern smart warehouses 
deploy arrays of wireless sensors that continuously 
monitor critical parameters including temperature, hu-
midity, ethylene concentration, CO₂ levels, and volatile 
organic compounds (VOCs) that serve as early chemical 
markers of pathogen activity (Tekeste et al., 2024). For 
example, metal-oxide semiconductor sensors can detect 
specific VOC fingerprints emitted by Fusarium-infected 
grains at concentrations as low as 1 ppm, triggering 
ventilation systems before visible mold appears. Edge 
AI devices installed directly in storage facilities process 
this sensor data in real-time using lightweight machine 
learning models, enabling immediate response without 
cloud dependency (Mahapatro et al., 2024; Platero-
Horcajadas et al., 2024). A notable implementation 
involves piezoelectric sensors that detect the acoustic 
signatures of insect activity in stored grains, with recur-

rent neural networks (RNNs) classifying species based 
on their unique feeding vibrations (Orchi et al., 2022). 
The integration of blockchain technology with these IoT 
systems creates immutable records of storage conditions 
and quality assessments throughout the supply chain, 
enhancing traceability and compliance (Masood et al., 
2023). Current research focuses on developing self-
powered sensors using energy harvesting technologies 
and federated learning approaches that allow multiple 
facilities to collaboratively improve disease prediction 
models without sharing sensitive operational data (Nau-
man et al., 2023; Wang et al., 2025).

Implementation Challenges and Future Directions
While AI-driven systems offer tremendous potential, 
several technical and practical hurdles must be addressed 
for widespread adoption. The black-box nature of many 
deep learning models creates trust barriers among grow-
ers and regulators, prompting research into explainable 
AI techniques that provide interpretable decision ratio-
nales (Ali et al., 2025). Energy requirements for con-
tinuous IoT operation in remote storage locations drive 
innovation in low-power chips and energy harvesting 
solutions (Tekeste et al., 2024). Perhaps most critically, 
the development of standardized protocols for data col-
lection and model validation across different crops and 
storage conditions remains an ongoing challenge (Wang 
et al., 2025). Future systems will likely incorporate digital 
twin technology, creating virtual replicas of storage facili-
ties that simulate disease spread under various conditions 
to optimize intervention strategies. As 5G networks ex-
pand, real-time holographic imaging combined with AI 
analysis may enable remote quality assessment of stored 
crops with unprecedented detail. The convergence of 
these technologies promises to transform post-harvest 
disease management from a reactive process to a predic-
tive, precision science capable of dramatically reducing 
global food losses while improving safety and quality 
throughout the supply chain (Petcu et al., 2024). 

CHALLENGES AND FUTURE PERSPEC-
TIVES IN POST-HARVEST DISEASE DE-
TECTION TECHNOLOGIES
The remarkable advancements in post-harvest disease 
detection technologies, while transformative, face 
several critical challenges that must be addressed to 
achieve widespread adoption and maximize their im-
pact on global food security (Yuan et al., 2024). Current 
limitations span technical, economic, and implementa-
tion barriers that hinder the transition from research 
prototypes to practical, scalable solutions (Palumbo 
et al., 2022). One of the most pressing technical chal-
lenges lies in the variability of produce characteristics 
across different cultivars, growing conditions, and stor-
age environments, which can significantly affect the 
accuracy of both molecular and imaging-based detec-
tion systems (Hasanaliyeva et al., 2022). For instance, 
spectral signatures used in hyperspectral imaging may 
vary substantially between apple varieties, requiring 
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extensive recalibration of machine learning models for 
different agricultural contexts (Wang et al., 2025). Simi-
larly, molecular diagnostic techniques often struggle 
with inhibitor compounds present in certain produce 
that interfere with DNA amplification, necessitating the 
development of more robust sample preparation meth-
ods (Fang and Ramasamy, 2015). The high computa-
tional requirements of advanced AI algorithms also pose 
practical constraints, particularly in resource-limited 
settings where access to high-performance computing 
infrastructure is limited (Lebrini and Ayerdi Gotor, 
2024; Khan et al., 2025). Economic barriers are equally 
significant, as many cutting-edge detection systems 
remain prohibitively expensive for small-scale farmers 
and developing economies where post-harvest losses are 
most acute (Portela et al., 2024).
Looking toward the future, several promising directions 
emerge to overcome these challenges and enhance the ef-
fectiveness of post-harvest disease management systems 
(Buja et al., 2021). The integration of multi-modal detec-
tion approaches that combine the strengths of molecular 
diagnostics, spectroscopic analysis, and AI-powered im-
aging represents a particularly promising avenue (Taha 
et al., 2025). Such hybrid systems could leverage nucleic 
acid detection for specific pathogen identification while 
using hyperspectral imaging for rapid, non-destructive 
screening of large produce volumes (Ljubobratović et al., 
2022). Advances in edge computing and miniaturized 
sensor technologies are paving the way for truly portable 
diagnostic devices that can perform complex analyses 
directly in storage facilities or packing houses without 
requiring specialized laboratory infrastructure (Cano 
Marchal et al., 2021). The development of standardized, 
crop-specific spectral libraries and molecular marker 
databases would significantly reduce the calibration bur-
den for new implementations, while federated learning 
approaches could enable continuous improvement of AI 
models across different facilities without compromis-
ing data privacy (Zhang et al., 2020; Taha et al., 2025). 
Another critical future direction involves the creation of 
closed-loop systems that not only detect diseases but also 
automatically trigger appropriate interventions, such as 
targeted antifungal treatments or adjusted storage con-
ditions (Silva et al., 2025). Perhaps most importantly, 
future research must focus on making these technologies 
more accessible through cost-reduction strategies, sim-
plified user interfaces, and localized training programs 
to ensure they reach the stakeholders who need them 
most (Orchi et al., 2023; He et al., 2025). As these in-
novations mature, they hold the potential to transform 
post-harvest management from a reactive process to a 
predictive, precision-based system capable of dramati-
cally reducing global food waste while improving food 
safety and quality throughout the supply chain (Nturam-
birwe et al., 2021). The coming decade will likely see 
these technologies move from experimental settings to 
widespread commercial implementation, provided that 
researchers, industry stakeholders, and policymakers 
collaborate to address the existing barriers to adoption 
(Ouhami et al., 2021).

CONCLUSIONS
Post-harvest diseases remain a formidable challenge 
to global food security, contributing to substantial 
economic losses and decreased nutritional availabil-
ity, particularly in developing regions where storage 
infrastructure is limited. However, the past decade 
has witnessed remarkable advancements in detection 
technologies that are transforming how we identify and 
manage post-harvest pathogens. Molecular diagnostics, 
including PCR, LAMP, and CRISPR-based systems, 
have enabled rapid, sensitive, and specific pathogen 
detection at the genetic level, overcoming many limi-
tations of traditional culturing methods. Meanwhile, 
spectroscopic techniques such as NIR and hyperspectral 
imaging provide non-destructive, real-time monitoring 
of biochemical changes in produce, facilitating early dis-
ease identification before visible symptoms appear. The 
integration of artificial intelligence and machine learn-
ing has further enhanced these approaches, automating 
disease recognition through deep learning models and 
enabling predictive analytics via IoT-enabled smart stor-
age systems. These innovations collectively represent a 
paradigm shift from reactive to proactive post-harvest 
management, with the potential to significantly reduce 
food waste and improve supply chain efficiency.
Despite these advancements, challenges remain in mak-
ing these technologies universally accessible, particularly 
for smallholder farmers and low-resource settings. Issues 
such as high costs, technical complexity, and the need 
for crop-specific calibration must be addressed to ensure 
equitable adoption. Future research should focus on devel-
oping affordable, user-friendly devices that combine mul-
tiple detection modalities—such as molecular assays with 
spectral imaging—while leveraging edge computing for 
real-time decision-making in the field. Additionally, the 
creation of open-access databases for pathogen signatures 
and standardized protocols will be crucial for widespread 
implementation. As these technologies mature, their 
integration with blockchain for traceability and digital 
agriculture platforms for holistic farm-to-table quality 
control will further enhance their impact. The continued 
collaboration between researchers, industry stakehold-
ers, and policymakers will be essential to translate these 
innovations into practical solutions that benefit the entire 
food supply chain. By harnessing the power of modern 
diagnostics, AI-driven analytics, and smart storage tech-
nologies, the agricultural sector can move closer to achiev-
ing sustainable food systems with minimized post-harvest 
losses, ensuring food security for future generations.
Ultimately, the fight against post-harvest diseases is not 
just a technological challenge but a global imperative. 
The innovations discussed in this review—from portable 
molecular tools to AI-powered imaging systems—dem-
onstrate that solutions are within reach. With concerted 
effort and investment, these cutting-edge technologies 
can be scaled to create a transformative impact, reduc-
ing waste, improving food safety, and securing the global 
food supply in an era of climate uncertainty and growing 
population demands. The future of post-harvest man-
agement lies in smart, precise, and accessible detection 
systems, and the progress made thus far provides a strong 
foundation for the road ahead.
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